B6100 – Managerial Statistics – Fall (A) 2013

Professor Nicolas Stier
317A Uris Hall
stier@gsb.columbia.edu

Time: Tuesday/Thursday/Friday (first 3 Fridays of semester)
Office Hours: TBD

Course Description

A career in management is likely to involve decision making based on data. In today’s revolution of computer and information technology there is an abundance of readily available information to be exploited as part of a decision making process. It is important to be able to organize and use data intelligently and correctly. The main focus of this course is to provide an understanding of basic statistical (inference) tools that are useful -or necessary- in managerial decision making. Statistical inference will allow one to make generalizations based on sample data, and answer questions such as estimating product reliability, testing investment strategies, testing for bias in analysts’ recommendations, and predicting a product’s sales on the basis of its characteristics.

The course will cover the following key concepts of statistical analysis and inference:

- **Descriptive statistics** deals with summarizing data, observing patterns in it, and extracting the vital information contained in it.

- **Probability** concepts provide a systematic framework for dealing with uncertainty that form the basis for statistical inference.

- **Sampling and Estimation** theory concerns the use of sample data for estimation and as a guide for statistical inference. How do we construct point estimates of unknown parameters and interpret confidence intervals? How reliable are election time exit polls? How large of a sample should we use? How can we use a geographically small and targeted marketing survey in predicting nationwide sales?

- **Hypothesis testing** involves the analysis of statistical evidence in verifying or rejecting a statement about the world (the hypothesis).

- **Regression** analysis deals with the construction of predictive models based on statistical data.
Books and reference material

Lecture slides will be provided in class and through the course website. These will cover the material discussed in class. In addition, a set of notes will be handed out as part of the course’s Casebook, under the title “Course Notes”. This should serve as the secondary source for the material covered. That material will provide the most important source of information for the course. The Casebook also contains a few articles of interest and some of the cases covered in class. Finally, there are a few short videos that cover some introductory material that should be reviewed prior to the start of the course, and some additional videos that would support some of the material covered in class.

There is one supplementary textbook that could serve as an additional source for the material, but it is not required. For those students that will use it sporadically, I placed some copies on reserve in the library.

The “Course Notes” referred to earlier contain practice problems organized by topic that should serve as weekly homework assignments. These assignments form an integral part of the course. Students should take these assignments seriously, as is it essential to learning the material. Weekly homework will not be collected or graded; answers are provided in the “Course Notes.”

I have also selected a few sample problems from the LSKB book. These tend to be simpler and are optional. The list of problems is also provided in the Casebook. The problems themselves and their solutions are available in the course webpage.

Homework Assignments and Grading

In addition to the weekly homework, there will be four hand-in assignments during the course; some will be short case write-ups, while some others will be more involved assignments that will primarily serve in helping students digest the material of the course and familiarizing students with the basic capabilities of spreadsheet software. Students can work in groups of up to six on the hand-in assignments. This means that students can work on the hand-in assignments with their study groups (but cannot discuss the answers with anybody else), and submit a single solution write-up. All members of the group will receive the same grade. Homework will be discussed in the review sessions run by the course’s teaching assistants.

In order to avoid ambiguity that may lead to unintentional violations of the Honor Code, the description types for assignments have been standardized. They are specified in the table below. All of our assignments are of type A.
<table>
<thead>
<tr>
<th>Type</th>
<th>Designation</th>
<th>Discussion of concepts</th>
<th>Preparation of submission</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>group / group</td>
<td>Permitted with designated group*</td>
<td>By the group</td>
<td>Same grade for each member of the group</td>
</tr>
<tr>
<td>B</td>
<td>group / individual</td>
<td>Permitted</td>
<td>Individually (No sharing of any portion of the submission)</td>
<td>Individual</td>
</tr>
<tr>
<td>C</td>
<td>individual / individual</td>
<td>None of any kind</td>
<td>Individually</td>
<td>Individual</td>
</tr>
<tr>
<td>D</td>
<td>(An optional category to be defined in detail by the individual faculty member)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We will have a midterm, and a final exam. Exams will be closed book. However, students may bring two sheets of notes to each exam.

Grades will be based on the maximum of the following two weighting schemes:

#1: Class participation 5%; Hand-in assignments 20%; Midterm 30%; Final 45%

#2: Class participation 5%; Hand-in assignments 20%; Midterm 20%; Final 55%

More specifically, cumulative scores will be computed based on both schemes and the greater of the two will be used to determine the score of each student. This makes it possible to recover from a weak score on the midterm.

NOTICE: All requests for special consideration, such as reconsideration of exam scores and requests to take exams at other than the scheduled times, must be made in writing.

Columbia Core Culture

The purpose of the Columbia Core Culture is to promote a consistent classroom environment of mutual respect, preparation and engagement. Our expectation of you in class is to be:

Present: Your success depends on being on time and present for the entire class every session. Attendance will be part of your grade for class participation and students are expected to sit in their assigned seats.

Prepared: Bring your nameplate, clicker, and complete any pre-work needed for class discussion. Expect the professor to cold call in class.

Participating: Active participation calls for no electronic devices such as laptops, tablet computers, or smartphones during class, except when the professor tells you as part of in-class work.
Course overview

(1) Descriptive statistics: frequency distribution; mean, median and mode; percentiles; variance and standard deviation; introduction to regression. 2 sessions. (LSKB: Chapters 2 and 3.)

(2) Probability: definition and basic properties of random variables; probability distributions; expected value and variance; transformations of random variables; normal distribution. 3 sessions. (LSKB: Chapters 4, 5 and 6.)

(3) Sampling and Estimation: random sampling; polls; types of samples; distribution of sample estimates; central limit theorem; point estimates; accuracy and precision; bias; constructing confidence intervals; hypothesis tests, p-values. 4 sessions. (LSKB: Chapters 7, 8 and 9.)

(4) Regression: simple linear regression; estimation of parameters and significance testing; correlation coefficient; interpreting the regression output; multiple linear regression; dummy variables; model selection; examples of non-linear regression; applications. 5 sessions. (LSKB: Chapters 13, 14 and 15.)
Detailed syllabus

(1): Descriptive Statistics
(Course notes Part 1 on Descriptive Statistics)

Session 1 (TUE): Introduction and course overview; recap of descriptive statistics material; standard deviation and measures of variability.

Session 2 (THU): Normal approximation; correlation (causation); regression line

(2): Probability
(Course notes Parts 3-4 on Random Variables and their Distributions, and Normal Distribution)

Session 3 (FRI): Random variables; expected value; variance

Skim through the note “Introduction to Expected Value” from your casebook.

Session 4 (TUE): Normal distribution and normal table; standardizing. (LSKB: 6.2)

HW1 due

Session 5 (THU): Var(aX+bY); linear transformations of normal; applications to hedging and portfolios.

Download the stock return data DailyReturns.xlsx A) Compute using the function STDEV the standard deviations of the two stock return series. B) Compute the daily return of a portfolio constructed by investing ½ of the money into each of the two stocks (you may assume that the weights stay constant and equal to .5 throughout the duration of the study). C) Compute the standard deviation of the portfolio return.

The case “Gotham Bank Investment Services” in your casebook is good reading after that session. You do not need to prepare answers to the questions at the end of the case.

(3): Sampling and Estimation
(Course Notes Parts 5-6 on Sampling Distributions, and Estimation and Confidence Intervals)

Session 6 (FRI): Sampling mean (LSKB: 7.1-7.4)

Session 7 (TUE): Midterm

Session 8 (THU): Sampling proportions; interpreting opinion polls (LSKB: 7.5)

HW2 due: Variance Associates

Session 9 (FRI): Confidence intervals for mean and proportion; Student t distribution (LSKB: 8.1-8.4)
Skim through the note “Dart Investment Funds” in your casebook

Session 10 (TUE): Hypothesis Testing (p-value)

(4): Linear Regression
(Course Notes Part 7 on Linear regression)

Session 12 (TUE): Multiple linear regression + dummy variables (LSKB: 13.7-13.8, 14.1-14.4, 14.6)

HW3 due — Analyzing the analysts

Session 13 (THU): Examples of regression; coming up with a relevant model; estimation of a demand model based on sales data (LSKB: 15.2-15.4)

Download the airline sales data AirlineSales.xlsx and fit demand functions for the two market segments. Come prepared to discuss your results in class.

Session 14 (TUE): Applications: GM case; forecasting via regression

Skim through the GM case.

HW4 due — Pricing Diamonds

Session 15 (THU): Examples of non-linear regression; All-around movers; course recap

Download the file name DailyReurnsBeta.xlsx that contains daily return series for 4 stocks plus daily returns for the SP500. Run a) pairwise regressions of stock returns against market return, and b) construct an equal weight portfolio (assume the weights stay constant) and regress the portfolio return against the market return. Come prepared to discuss your results in class.